MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

 

 

Module Information

معلومات المادة الدراسية

Module Title

Numerical Methods in Chemical Engineering

Module Delivery

Module Type

Core

☒ Theory

☒ Lecture

☒ Lab

☒ Tutorial

☐ Practical

☐ Seminar

Module Code

CHPR309

ECTS Credits

6

SWL (hr/sem)

150

Module Leve

UGx11  UGIII

Semester of Delivery

6

Administering Department

CHPR

 College

COGE

Module Leader

Nuhad AbdulWahed

 e-mail

E-mail

Module Leader’s Acad. Title

Lecturer

Module Leader’s Qualification

Ph.D.

Module Tutor

Name (if available)

 e-mail

E-mail

Peer Reviewer Name

Name

 e-mail

E-mail

Scientific Committee Approval Date

01/06/2023

Version Number

1.0

               

 

 

Relation with other Modules

العلاقة مع المواد الدراسية الأخرى

Prerequisite module

None

Semester

 

Co-requisites module

None

Semester

 

 

 

 

 

 

 

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

 Module Objectives

أهداف المادة الدراسية

 

  1. Introduce approximation techniques for functions.
  2. Familiarize students with numerical integration methods.
  3. Provide an understanding of solving nonlinear equations.
  4. Develop skills in solving ordinary differential equations.
  5. Introduce linear programming and its applications.

Module Learning Outcomes

 

مخرجات التعلم للمادة الدراسية

  1. Apply interpolation and extrapolation techniques to approximate functions.
  2. Utilize numerical integration methods to calculate definite integrals.
  3. Solve nonlinear equations using various iterative methods.
  4. Solve ordinary differential equations using numerical techniques.
  5. Formulate and solve linear programming problems.

Indicative Contents

المحتويات الإرشادية

Indicative content includes the following.

 

Approximation of functions interpolation and extrapolation of techniques; forward, backward and central difference, error approximation; Numerical integration – Newton Cotes Integration technique, Simpson’s 1/3rd and 3/8th rule, trapezoidal rule, Gaussian quadrature; Multiple Integral solution of Non-linear equation, bisection methods, regular-falsi method, Newton-Raphson methods, Euler’s method, Euler’s modified iteration technique, Picard's method, Runge-Kutta 4th order technique, Taylor series method; Solutions of ordinary differential equation (initial and boundary value problem) Linear programming.

 

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies

 

The main strategy that will be adopted in delivering this module is to encourage students’ participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

 

 

Student Workload (SWL)

الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا

Structured SWL (h/sem)

الحمل الدراسي المنتظم للطالب خلال الفصل

100

Structured SWL (h/w)

الحمل الدراسي المنتظم للطالب أسبوعيا

6

Unstructured SWL (h/sem)

الحمل الدراسي غير المنتظم للطالب خلال الفصل

50

Unstructured SWL (h/w)

الحمل الدراسي غير المنتظم للطالب أسبوعيا

4

Total SWL (h/sem)

الحمل الدراسي الكلي للطالب خلال الفصل

150

 

 

Module Evaluation

تقييم المادة الدراسية

 

As

Time/Number

Weight (Marks)

Week Due

Relevant Learning Outcome

Formative assessment

Quizzes

2

10% (10)

5 and 10

LO #1, #2 and #3

Assignments

2

20% (20)

2 and 12

LO #3, #4 and #5

Projects / Lab.

8

10% (10)

Continuous

All

Report

1

10% (10)

13

LO #4,and #5

Summative assessment

Midterm Exam

1.5hr

10% (10)

7

LO #1 - #4

Final Exam

2hr

50% (50)

16

All

Total assessment

100% (100 Marks)

 

 

 

 

 

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري

Week 

Material Covered

Week 1

Function Approximation Techniques

Week 2

Numerical Integration: Newton-Cotes Integration Techniques

Week 3

Numerical Integration: Simpson's Rule and Trapezoidal Rule

Week 4

Numerical Integration: Gaussian Quadrature

Week 5

Nonlinear Equation Solving: Bisection and Regula-Falsi Methods

Week 6

Nonlinear Equation Solving: Newton-Raphson Method

Week 7

Nonlinear Equation Solving: Euler's Method and Modified Euler's Method

Week 8

Nonlinear Equation Solving: Picard's Method

Week 9

Nonlinear Equation Solving: Runge-Kutta 4th Order Method

Week 10

Taylor Series Method for Ordinary Differential Equations

Week 11

Initial Value Problems: Euler's Method and Runge-Kutta Methods

Week 12

Boundary Value Problems: Shooting Method and Finite Difference Method

Week 13

Boundary Value Problems: Finite Element Method

Week 14

Introduction to Linear Programming

Week 15

Linear Programming Applications

Week 16

Preparatory week before the final Exam

 

Delivery Plan (Weekly Lab. Syllabus)

المنهاج الاسبوعي للمختبر

Week 

Material Covered

Week 1

Introduction to MATLAB: Familiarization with MATLAB environment and basic programming concepts.

Week 2

Function Approximation: Implementing interpolation techniques (e.g., polynomial interpolation) in MATLAB.

Week 3

Numerical Integration: Writing MATLAB code to perform numerical integration using various methods.

Week 4

Nonlinear Equation Solving: Implementing iterative methods (e.g., bisection, Newton-Raphson) to solve nonlinear equations in MATLAB.

Week 5

Ordinary Differential Equations: Solving initial value problems using MATLAB's numerical ODE solvers.

Week 6

Boundary Value Problems: Solving boundary value problems using MATLAB's finite difference method.

Week 7

Linear Programming: Formulating and solving linear programming problems using MATLAB's optimization toolbox.

 

Learning and Teaching Resources

مصادر التعلم والتدريس

 

Text

Available in the Library?

Required Texts

"Numerical Methods for Engineers" by Steven C. Chapra and Raymond P. Canale

No

Recommended Texts

"Numerical Analysis" by Richard L. Burden and J. Douglas Faires

No

Websites

https://books.google.iq/books/about/Numerical_Analysis.html?id=zXnSxY9G2JgC&redir_esc=y

                         

                                                                     Grading Scheme

مخطط الدرجات

Group

Grade

التقدير

Marks %

Definition

Success Group

(50 - 100)

A - Excellent

امتياز

90 - 100

Outstanding Performance

B - Very Good

جيد جدا

80 - 89

Above average with some errors

C - Good

جيد

70 - 79

Sound work with notable errors

D - Satisfactory

متوسط

60 - 69

Fair but with major shortcomings

E - Sufficient

مقبول

50 - 59

Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail

راسب (قيد المعالجة)

(45-49)

More work required but credit awarded

F – Fail

راسب

(0-44)

Considerable amount of work required

 

 

 

 

 

 

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.