MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

 

 

Module Information

معلومات المادة الدراسية

Module Title

Numerical Methods

Module Delivery

Module Type

C

            ☒ Theory   

            ☒ Lecture

            ☒ Lab

            ☐ Tutorial

            ☐ Practical

            ☐ Seminar

Module Code

BOG1154

ECTS Credits

5

SWL (hr/sem)

125

Module Level

UGx11  UGIII

Semester of Delivery

Five

Administering Department

Oil and Gas Engineering

 College

 Oil and Gas Engineering

Module Leader

 

 e-mail

 

Module Leader’s Acad. Title

 

Module Leader’s Qualification

 

Module Tutor

 

 e-mail

 

Peer Reviewer Name

 

 e-mail

 

Scientific Committee Approval Date

 

Version Number

1.0

               

 

 

Relation with other Modules

العلاقة مع المواد الدراسية الأخرى

Prerequisite module

 

Semester

 

Co-requisites module

 

Semester

 

 

 

 

 

 

 

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

 Module Objectives

أهداف المادة الدراسية

 

To teach numerical techniques for solving non-linear equations.

 

Module Learning Outcomes

 

مخرجات التعلم للمادة الدراسية

After studying this course, the learners will be able to: -

1. Understand the basics of elementary function and their applications.

2. Describe the difference between numerical and analytical methods

and solutions.

3. Identify main sources of errors and take steps to eliminate or reduce

the impact of errors

4. Apply numerical methods to solve petroleum engineering problems.

 

Indicative Contents

المحتويات الإرشادية

1. Approximation and Errors

a. Accuracy,

b. Truncation,

c. Taylor series and bracketing methods

2. Linear Equations

a. Gauss elimination,

b. Eigen Values.

3. Non-Linear Equations

a. Bisection method,

b. iteration,

c. secant method,

d. Newton-Raphson method,

e. System of Nonlinear Equations and,

f. Convergence etc

4. Numerical Differentiation and Integration

a. Accuracy of derivatives,

b. Newton-Cotes Integration Formulae,

c. Integration for multiple and improper integrals.

5. Interpolation and Curve Fitting Methods

a. Binary Search,

b. approximation,

c. Lagrange polynomials,

d. Inverse type,

e. Least Squares and,

f. Orthogonal Polynomials including rational and spline function.

 

 

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies

The main strategy for delivering this module is to foster active student engagement in exercises and promote the development of critical thinking skills. This will be accomplished through interactive classes, engaging tutorials, and the incorporation of hands-on experiments and sampling activities that captivate the students' interest. By employing these approaches, students will have the opportunity to apply their knowledge and enhance their understanding of the course material.

 

Student Workload (SWL)

الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا

Structured SWL (h/sem)

الحمل الدراسي المنتظم للطالب خلال الفصل

58

Structured SWL (h/w)

الحمل الدراسي المنتظم للطالب أسبوعيا

 

Unstructured SWL (h/sem)

الحمل الدراسي غير المنتظم للطالب خلال الفصل

67

Unstructured SWL (h/w)

الحمل الدراسي غير المنتظم للطالب أسبوعيا

 

Total SWL (h/sem)

الحمل الدراسي الكلي للطالب خلال الفصل

125

 

 

Module Evaluation

تقييم المادة الدراسية

 

As

Time/Number

Weight (Marks)

Week Due

Relevant Learning Outcome

Formative assessment

Quizzes

 

10% (10)

5 and 10

LO #1, #2 and #10, #11

Assignments

 

10% (10)

2 and 12

LO #3, #4 and #6, #7

Projects / Lab.

 

10% (10)

Continuous

All

Report

 

10% (10)

13

LO #5, #8 and #10

Summative assessment

Midterm Exam

1hr

10% (10)

7

LO #1 - #7

Final Exam

2hr

50% (50)

16

All

Total assessment

100% (100 Marks)

 

 

 

 

 

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري

Week 

Material Covered

Week 1

Week 1: Approximation and Errors: Accuracy, Truncation

Week 2

Week 2: Approximation and Errors: Taylor series and bracketing methods

Week 3

Week 3: Linear Equations: Gauss elimination

Week 4

Week 4: Linear Equations: Eigen Values

Week 5

Week 5: Non-Linear Equations: Bisection method

Week 6

Week 6: Non-Linear Equations: Iteration

Week 7

Week 7: Mid-Semester Exam

Week 8

Week 8: Non-Linear Equations: Secant method

Week 9

Week 9: Non-Linear Equations: Newton-Raphson method

Week 10

Week 10: Non-Linear Equations: System of Nonlinear Equations, Convergence

Week 11

Week 11: Numerical Differentiation and Integration: Accuracy of derivatives

Week 12

Week 12: Numerical Differentiation and Integration: Newton-Cotes Integration Formulae

Week 13

Week 13: Numerical Differentiation and Integration: Integration for multiple and improper integrals

Week 14

Week 14: Interpolation and Curve Fitting Methods: Binary Search, Approximation

Week 15

Week 15: Interpolation and Curve Fitting Methods: Lagrange polynomials, Inverse type, Least Squares, Orthogonal Polynomials (including rational and spline function)

Week 16

Preparatory week before the final Exam

 

Delivery Plan (Weekly Lab. Syllabus)

المنهاج الاسبوعي للمختبر

Week 

Material Covered

Week 1-14

Lab part of the course will include Mathematica 11, or Matlab 2016. The

introductory programming with course work related to the course outline

shall be carried out.

 

Learning and Teaching Resources

مصادر التعلم والتدريس

 

Text

Available in the Library?

Required Texts

 

 

Recommended Texts

a. C. Woodford, C. Phillips. “Numerical Methods with Worked Examples: Matlab Edition”, Springer Science and Business Media

b. Steven T. Karris. “Numerical Analysis Using MATLAB and

Excel”, Orchard Publications

c. Steven C. Chapra, Raymond P. Canale. “Numerical methods for engineers”, McGraw-Hill Higher Education

d. Timothy Sauer. “Numerical analysis”, Pearson Education

e. Stephen Wolfram. “An elementary introduction to the wolfram language”, Wolfram Media, Incorporated.

 

Websites

 

                         

                                                                     Grading Scheme

مخطط الدرجات

Group

Grade

التقدير

Marks %

Definition

Success Group

(50 - 100)

A - Excellent

امتياز

90 - 100

Outstanding Performance

B - Very Good

جيد جدا

80 - 89

Above average with some errors

C - Good

جيد

70 - 79

Sound work with notable errors

D - Satisfactory

متوسط

60 - 69

Fair but with major shortcomings

E - Sufficient

مقبول

50 - 59

Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail

راسب (قيد المعالجة)

(45-49)

More work required but credit awarded

F – Fail

راسب

(0-44)

Considerable amount of work required

 

 

 

 

 

 

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.