MODULE DESCRIPTION FORM
Module Information معلومات المادة الدراسية |
|||||||
Module Title |
Calculus I |
Module Delivery |
|||||
Module Type |
Support |
☒ Theory
☒ Tutorial ☐ Practical ☐ Seminar |
|||||
Module Code |
GPPE103 |
||||||
ECTS Credits |
6 |
||||||
SWL (hr/sem) |
150 |
||||||
Module Level |
UGx11 1 |
Semester of Delivery |
1 |
||||
Administering Department |
GPPE |
College |
COGE |
||||
Module Leader |
Name: Moataz Sajid Sharqi |
|
E-mail moataz.sajid@buog.edu.iq |
||||
Module Leader’s Acad. Title |
Ass. Lec. |
Module Leader’s Qualification |
MSc. |
||||
Module Tutor |
Name (if available) |
|
|
||||
Peer Reviewer Name |
Name |
|
|
||||
Scientific Committee Approval Date |
01/06/2023 |
Version Number |
1.0 |
||||
Relation with other Modules العلاقة مع المواد الدراسية الأخرى |
|||
Prerequisite module |
None |
Semester |
|
Co-requisites module |
None |
Semester |
|
Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية |
|
Module Objectives أهداف المادة الدراسية
|
|
Module Learning Outcomes
مخرجات التعلم للمادة الدراسية |
|
Indicative Contents المحتويات الإرشادية |
Functions: Domain and range, graphs, inverse of functions, [6 hrs.] algebraic functions (real valued function; constant function; absolute value function; piecewise function; rational function), [3 hrs.] transcendental functions (Trigonometric functions; Inverse of trigonometric functions; Exponential functions; Logarithmic functions), hyperbolic functions and their inverse [12 hrs.]. Limits and continuity: Limit of a function and limit laws, Sandwich theorem, definition of limit, one sided limit, Continuity, Limit involving infinity [15 hrs.]. Differentiations: Tangents and derivative at point, derivative of algebraic functions, derivative of transcendental functions, chain rule and implicit differentiation, differentiations of hyperbolic functions. [12 hrs.] Applications of differentiations: Maximum and Minimum values, mean value theorem [6 hrs.]; Roll’s theorem, the shape of a graph, L’Hopital’s rule, [6 hrs.] velocity and acceleration, average velocity [6 hrs]. Indefinite integration and definite integration [6 hrs.]
|
Learning and Teaching Strategies استراتيجيات التعلم والتعليم |
|
Strategies |
|
Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا |
|||
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل |
72 |
Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا |
5 |
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل |
78 |
Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا |
|
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل |
150 |
Module Evaluation تقييم المادة الدراسية |
|||||
As |
Time/Number |
Weight (Marks) |
Week Due |
Relevant Learning Outcome |
|
Formative assessment |
Quizzes |
2 |
10% (10) |
5 and 10 |
LO #1, #2 and #10, #11 |
Assignments |
2 |
10% (10) |
2 and 12 |
LO #3, #4 and #6, #7 |
|
Projects / Lab. |
1 |
10% (10) |
Continuous |
All |
|
Report |
1 |
10% (10) |
13 |
LO #5, #8 and #10 |
|
Summative assessment |
Midterm Exam |
2hr |
10% (10) |
7 |
LO #1 - #7 |
Final Exam |
3hr |
50% (50) |
16 |
All |
|
Total assessment |
100% (100 Marks) |
|
|
Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري |
|
Week |
Material Covered |
Week 1 |
Domain and range, graphs, inverse of functions |
Week 2 |
algebraic functions (real valued function; constant function; absolute value function; piecewise function; rational function) |
Week 3 |
transcendental functions (Trigonometric functions; Inverse of trigonometric functions; Exponential functions; Logarithmic functions) |
Week 4 |
hyperbolic functions and their inverse |
Week 5 |
Limit of a function and limit laws |
Week 6 |
Sandwich theorem, definition of limit, one sided limit |
Week 7 |
Mid-term Exam + Continuity, Limit involving infinity |
Week 8 |
Tangents and derivative at point, derivative of algebraic functions |
Week 9 |
derivative of transcendental functions, chain rule and implicit differentiation |
Week 10 |
differentiations of hyperbolic functions |
Week 11 |
Maximum and Minimum values, mean value theorem |
Week 12 |
Complex Frequency, s-Plane, Poles and Zeros, Response Function, Bode Plots |
Week 13 |
Roll’s theorem, the shape of a graph |
Week 14 |
L’Hopital’s rule, velocity and acceleration, average velocity |
Week 15 |
Indefinite integration and definite integration |
Week 16 |
Preparatory week before the final Exam |
Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر |
|
Week |
Material Covered |
Week 1 |
None |
Week 2 |
None |
Week 3 |
None |
Week 4 |
None |
Week 5 |
None |
Week 6 |
None |
Week 7 |
None |
Learning and Teaching Resources مصادر التعلم والتدريس |
||
|
Text |
Available in the Library? |
Required Texts |
Joel Hass, Maurice D. Weir, Frank R. Giordano, Calculus Thomas, 11th Edition, Addison- Wesley, 2005. |
Yes |
Recommended Texts |
Anton H., Bivens I., Davis S., Calculus, 7th eddition, 2002. |
No |
Websites |
|
مخطط الدرجات |
||||
Group |
Grade |
التقدير |
Marks % |
Definition |
Success Group (50 - 100) |
A - Excellent |
امتياز |
90 - 100 |
Outstanding Performance |
B - Very Good |
جيد جدا |
80 - 89 |
Above average with some errors |
|
C - Good |
جيد |
70 - 79 |
Sound work with notable errors |
|
D - Satisfactory |
متوسط |
60 - 69 |
Fair but with major shortcomings |
|
E - Sufficient |
مقبول |
50 - 59 |
Work meets minimum criteria |
|
Fail Group (0 – 49) |
FX – Fail |
راسب (قيد المعالجة) |
(45-49) |
More work required but credit awarded |
F – Fail |
راسب |
(0-44) |
Considerable amount of work required |
|
|
|
|
|
|
Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above. |