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Chapter Three
A.C. Circuits

Introduction

In previous chapter we have considered circuits and networks in which the
current has remained constant, i.e. direct current systems. However, there remains
another type of system — the alternating system — in which the magnitudes of the
voltage and of the current vary in a repetitive manner. Examples of such repetitive
currents are shown in Fig. 3.1.

An alternating quantity is one that regularly acts first in one direction and
then in the opposite direction and do not have constant magnitude with time. Its
magnitude continuously vary with time.
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Fig. 3.1 Alternating waveforms

Alternating current can be abbreviated to a.c., hence a system with such an
alternating current is known as an a.c. system. The above curves relating current to
time are known as waveforms.

Generation of an alternating e.m.f.

Fig.3.2 shows a loop AB carried by a spindle DD rotated at a constant speed
in an anticlockwise direction in a uniform magnetic field due to poles NS. The
ends of the loop are brought out to two slip-rings C; and C,, attached to DD.
Bearing on these rings are carbon brushes E; and E,, which are connected to an
external resistor R. When the plane of the loop is horizontal, as shown in Fig.
3.3(a), the two sides A and B are moving parallel to the direction of the magnetic
flux; it follows that no flux is being cut and no e.m.f. is being generated in the
loop. Subsequent diagrams in Fig.3.3 show the effects which occur as the coil is
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rotated. In Fig. 3.3(b), the coil sides are cutting the flux and therefore an e.m.f. is
induced in the coil sides. Since the
coil sides are moving in opposite
directions, the e.m.fs act in opposite
directions, as shown by the dot and
cross notation. However, in this case
the e.m.f. which appears at the
brushes is twice that which is induced
in a coil side. Once the coil reaches
the position shown in Fig. 3.3(c), the
rate of cutting reaches a maximum.
Thereafter the e.m.f. falls to zero by
the time the coil has rotated to the
position shown in Fig. 3.3(d).
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Fig. 3.3 EMF in rotating coil

The induced e.m.f. in the position shown in Fig. 3.3(e) is appear that the diagram is
the same as that of Fig. 3.3(b), but in fact it is side A which bears the cross while
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side B has the dot. This means that the e.m.f. is of the same magnitude but of the
opposite polarity. This observation also applies to Fig. 3.3(f). It follows that the
variation of induced e.m.f. during the second half of the cycle of rotation is the
same in magnitude as during the first half but the polarity of the e.m.f. has
reversed.

It is seen that the induced e.m.f. varies as sine function of the time angle ot
and when e.m.f. is plotted against time, a curve similar to the one shown in Fig. 3.4
Is obtained. This curve is known as sine curve and the e.m.f. which varies in this
manner is known as sinusoidal e.m.f.

The e.m.f. generated in one side of the coil which contains N conductors, is
given by, e = N Bl v sin 6 (volt).
Where:

N=Number of coil turns. B=Flux density f_;: SN

(Whb./m?). I=length of coil sides (meters). = =/ £,

v=velocity (metre/second), 6= wt. 1 Y . I
w=2nf. 0o w2 '-'T Im/2  J2Am

f=frequency of rotation of the coil in Hz. s x y |

The total e.m.f. generated in loop is :
e = 2N Bl vsin 6 (volt)...... (1)

Now, e has maximum value of £, (say) when 6 =90°. Hence, from Eq. (i) above, we get,

E =2BNIvvolt. Therefore Eq (1) can be rewnitten ase=E_ sin 6

Ifb width of the coil in meters ; = frequency of rotation of nmlmHz then v=1 bf
E_ = 2BNIX nbf=21 fNBAvols

Sumilarly. the equation of mduced altemating current 15 =1, sin 0

Since 0= 2nf, where f1s the frequency of rotation of the cotl, the above equations of the voltage
and current can be written as

: : l"'J " _ : : I
e=E 5;1112:ftfr=En‘isLuL'_IiI ]r andr=Im51112:[fr=Imsu1L'TT ]r

where I = time-period of the alternating voltage or current = 1/f
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Waveform terms and definitions

Waveform. The variation of a quantity such as voltage or current shown on a graph
to a base of time.

Cycle. One complete set of positive and negative values of alternating quantity is
known as cycle.

Period. The time taken by an alternating quantity to complete one cycle is called its
time period T. Fig.3.6. Illustrates a variety of situations in which the cycle and
period have identical values.

Instantaneous value. The magnitude of a waveform at any instant in time.
Instantaneous values are denoted by lower-case symbols such as e, v and i.

Peak value. The maximum instantaneous value measured from its zero value is
known as its peak value.

Peak-to-peak value. The maximum variation between the maximum positive
instantaneous value and the maximum negative instantaneous value is the peak-to-
peak value. For a sinusoidal waveform, this is twice the peak value. The peak-to-
peak value is Ep, or Vi, 0r 1.

The relationships between peak value and peak-to-peak value are illustrated in Fig.
3.7.
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| A/

Fig. 3.6 Cycles and periods
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Fig. 3.7 Peak values
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Frequency. The number of cycles that occur in 1 second is termed the frequency of
that quantity. Frequency is measured in hertz (Hz). It follows that frequency f is
related to the period T by the relation:
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Fig. 3.8. Lffect on waveforms by varying frequency

Examplel: A coil of 100 turns is rotated at 1500 r/min in a magnetic field having a
uniform density of 0.05 T, the axis of rotation being at right angles to the direction
of the flux. The area per turn is 40 cm?. Calculate

(a) the frequency;

(b) the period,;

(c) the maximum value of the generated e.m.f,;

(d) the value of the generated e.m.f. when the coil has rotated through 30° from the
position of zero e.m.f.

Sol:

(a) Since the e.m.f. generated in the coil undergoes one cycle of variation
when the coil rotates through one revolution,
Frequency = no. of cycles per second
= no. of revolutions per second
15
=199 _ 55
60 .
(b) Period = time of 1 cycle
= L_ =0.04s
25
(c) E.,=2mrx0.05x0.004 < 100 x 1500/60 = 3.14 V

(d) For #=30°sin30°=0.5, - ¢=314x05=1.57V
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Average and r.m.s. values of sinusoidal currents and voltages
If 1., is the maximum value of a current which varies sinusoidally as shown in Fig.

3.9(a), the instantaneous value i is represented by: i = I, sinf. where 0 is the angle
in radians from instant of zero current.

(a)

| © + Current

=Y

Heating effect

bl

Fig. 3.9. Average and r.m.s. values of a sinusoidal current
The total area enclosed by the current wave over half-cycle is:

rz' .de = fmrsina -d6 = -1, [cos 6]

0 0

=—[,[-1— 1]= 21, ampere radians

Average value=Area under the curve/Base

From expression below, the average value of current over a half-cycle is:

21 [ampere radians]

7 [radians]

ie. I =06371, amperes

The average heating effect is:[H.W]
. , ) .
(m/2)I. R [lett radians| ~ 172 P watts
7T [radians]

2
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r.m.s. value of a sinusoidal current or voltage is:
'Im

\2

Form factor of a sine wave is:

I=1m=0.7071,

Form factor of a wave is

" RMS value

Average value

0.707 ¥ maximum value

0.637 X maximum value

Peak or crest factor of a wave 1s
ko= 1.11 f

Peak or maximum value

RALS value

and peak or crest factor of a sine wave is

maximum value

0.707 X maximum value

k= 1414

Example2: An alternating voltage has the equation v = 141.4 sin 377t; what are the
values of:

(@) r.m.s. voltage;

(b) frequency;

(c) the instantaneous voltage when t = 3 ms?

Sol: The relation is of the form v = V_ sin @t and, by comparison,
(a) V,_ =1414V="2F
hence V= ]4.1'4 =100V
V2

(b) Also by comparison
w=377rad/s=2xf

hence f= ;i =60 Hz
T

(c¢) Finally
v=141.4 sin 377t
When t=3x10"7s
v=141.4 sin(377 x 3 x 107) = 141.4 sin 1.131
=141.4x0.904=1278V
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Average and r.m.s. values of non-sinusoidal currents and voltages

This can easily be done by considering this example.
Example3: A current has the following steady values in amperes for equal intervals

of time changing instantan

eously from one value to the next (Fig. 3.10):

0, 10, 20, 30, 20, 10, 0, —10, —20, =30, —20, —10, 0, etc.
Calculate the r.m.s. value of the current and its form factor.

Sol:

Because of the symmetry
of the waveform, it is only
necessary to calculate the
values over the first half-
cycle.

area under curve

length of base

If n equidistant mid-ordinates, 7, 7, etc. are taken over either the positive or the
negative half-cycle, then average value of current over half a cycle is:
ittt

[I\"

n _
The root-mean-square (or r.m.s.) value of the current is:

N
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n
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A.C. Through Resistance, Inductance and Capacitance
We will now consider the phase angle introduced between an alternating voltage

and current when the circuit contains resistance only, inductance only and
capacitance only. In each case, we will assume that we are given the alternating
voltage of equation e = E;, sin ot and will proceed to find the equation and the

phase of the alternating current produced in each case.
A.C. Through Pure Ohmic Resistance Alone
The circuit is shown in Fig. 3.11. Let the applied voltage be given by the equation.
v=F, smB=V s (i)
Let R = ohmic resistance ; § = instantaneous current

Obviously, the applied voltage has to supply ohmic voltage drop only. Hence

v = iR
: o f S .
Putting the value of “v* from above, we get 7, sinar=iR: i= 7 0 ot (1)
Current 7" 1s maximum when sin of 1s unity . I =V, /R Hence, equation (i) becomes,
1=1 sin of ..(ifd)

it
Comparing (1) and (i7), we find that the alternating voltage and current are i phase with each

other as shown mn Fig. 3.12.

—
- ¥=J7 sin @t

AARAA

i

i= [, 5in ot

()

"~
V= sin ol

Power. Instantancous power, p=vi =V, I sin” or ..(F1g.3.13 )
= ﬁ(l— cos 20mf )= L I ong 2 f
2 2 2

?‘?JI?‘F!

. : VI -
Power consists of a constant part and a fluctuating part % cos 2 o of frequency

double that of voltage and current waves. For a complete

1 IJ‘.I'T

cycle. the average value of cos 20F 15 Zero.




Hence, power for the whole cycle 1s

P=lk I sinzmt
o Vadn_Vu I g
2 N ]
or P = V= Iwatt

where 77 = rm.s. value of applied voltage. Vinn
I = rm.s. value of the current. 1

It 15 seen from (Fig. 3.13 ) that no part of the power 7 .
cycle becomes negative at any time. In other words, in a — 7
purely resistive circuit, power is never zero. This is so l
because the instantaneous values of voltage and current ——t
are always either both positive or negative and hence the
produet 1s always positive. g v=Fr sin @1

(Fig.3.13 )

A.C. Through Pure Inductance Alone

Whenever an alternating voltage is applied to a purely inductive coil, a back e.m.f.
Is produced due to the self-inductance of the coil. The back e.m.f., at every step,
opposes the rise or fall of current through the coil. As there is no ohmic voltage
drop, the applied voltage has to overcome this self-induced e.m.f. only. So at every
step

Lo i |
dt i
Now P Yusaa "/
' I - [ L
Fosnmot = L= . di ===t o dt
" t L L
: o i '
Integrating both sides, we get = T J'&m N dlr
¥ i 3
[E y B V= b S {3
- E‘"— s [.w.r = E.] - Va sim [ — T2}
af, 2 X, ik
. ¥ o 2
Max. value of its J =—= when sin | o — — k:a T 1T
i 1 2 -

Hence, the equation of the cument becomes ¢ = I sin (of —3/2).
So. we find that if applied voltage i= represented by v= F_ sin 0¥, then eurrent flowing in a prerel)

'

induetive cirewit is given by = I sin

x )
1'1?r—?|

o Pavweer Wave
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Clearly, the current lags behind the applied voltage by the phase difference
between the two is /2 with voltage leading. Vectors are shown in Fig. 3.14 where
voltage has been taken along the reference axis. We have seen that I, = V /o L =
Vi/X.. Here ‘oL’ plays the part of ‘resistance’. It is called the (inductive)
reactance X_ of the coil and is given in ohms if L is in henry and ® is in
radian/second.

Now, X_. = L =2z fL ohm. It is seen that X, depends directly on frequency of the
voltage. Higher the value of f, greater the reactance offered and vice-versa.

Instantaneous power = vi = V|, sin ot.cos o t= 0.5V |, sin(2wt).
in
Power for whole cycle is P= @ J sin 200 ¢ df =0
£ 0

A.C. Through Pure Capacitance Alone

When an alternating voltage 1s applied to the plates of a capacitor, the capacitor 15 charged first
in one direction and then in the opposite direction. When reference to Fig. 3.16. , let

v = p.d. developed between plates at any instant

g = Charge on plates at that mstant.
Then g = Cv ..where C 1s the capacitance
= CV smor ..putting the value of v.
I v = Jg, sin ot
T""‘\\ I
—
I (?E'g
A ' . %_'4 —=1
L o |
\
V=l sin @t bL_j=Ipsinfwt+ n2)
Fig.3.16 Fig.3.17
Now, current 7 15 given by the rate of flow of charge.
. _dl . _ " v, . T
=% -4 (CV, smof) CV, cosefori=—"—cos@ —2—sm®i+—
dr dt loC loC 2
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: = 7 Power Wave
Obviously, I, = l"OH;C =X_m i=1I, sinot +%
i C i

The denominator X~ = 1/ 1s known as capacitive
reactance and 1s in ohms 1if C 1s in farad and ®in radian/
second. It is seen that if the applied voltage 1s given by

v="V, sinaf, then the current 1s given by =1 sin (er + 0/2).

Hence, we find that the current in a pure capacitor leads
its voltage by a quarter cycle as shown i Fig. 3.17. or
phase difference between its voltage and current 1s /2 with
the current leading. Vector representation is given in Fig.
3.17.. Note that V_ is taken along the reference axis.

Power. Instantaneous power

p=vi=V, sin . I s (e + 90°)

. 1 .
— —
= I?;nfm sin fcos ft 3 mem sm 2t

Power for the whole cycle

Im
=200, [ sin2otdr=0
0

Example The voltage applied across |

3-branched circuit of Fig. below is given by v = 100 sin Iny iy iy
(3000t + /4). Caleulate the branch currents and total I ) -
current. Zfb} v 25 i: R % c=

Solution. The total instantaneous current is the
vector sum of the three branch currents.

Now i, =wR = 100 sin (5000 ¢ + m/4)/25
=4 sin (5000 ¢ + w/4)

’ l N N
1., 10 . n
= EJ ¥ dr_TJ 100 sin [SUDDE+EJdE

=—10cos (30007 + T'4)

_10°x100[ = cos (5000 7 + 0/4)
2 5000

.

in=C % —-C % [100 sin (5000 f + /4)]
=30 = 107% x 100 x 5000 x cos (5000 t+ m/4) = 15 cos (5000 t + w/4)
i, =4 sin (5000 £+ m/4) — 10 cos (5000 ¢ + w/4) + 15 cos (5000t + m/4)

=4 sin (5000 ¢ + w'4) + 5 cos (5000 7 + w'4)

t






